The correct option is D 32
Let r be the common ratio then b=ar,c=ar2, and
logca,logbc,logab are in A.P.
⇒logealogec,logeclogeb,logeblogea are in A.P.
⇒logealoge(ar)2,log3(ar)2logear,logearlogea are in A.P.
so logealogea+2loger,logea+2logerlogea+loger,logea+logerlogea are in A.P.
Putting logerlogea=x
We get
11+2x,1+2x1+x,1+x are in A.P.
∴2(1+2x)(1+x)=(1+x)+1(1+2x)
⇒2x3−3x2−3x=0
Since a, b, c are distinct so r≠1, so x≠0
∴2x2−3x−3=0
x=14(3±√33) then (1+x)−1(1+2x)=3, so the common differences of A.P. is 3/2