AB, AC, AD, BC, BD, CD. Six in number.
A+B+C+D=π
∴A+B=π−(C+D) ..(1)
or cos(A+B)=−cos(C+D)
or cosAcosB+cosCcosD=sinAsinB+sinCsinD ..(2)
Similarly write relations in AC, BD and AD; BC by taking
A+C=π−(B+D)
A+D=π−(B+C)
Adding these, we get
∑cosAcosB=∑sinAsinB
Six terms in each sigma.