wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π then prove that sin 2A +sin 2B+sin 2C =4 sin A sin B sin C.

Open in App
Solution

Consider the problem

sinx+siny=2sin(x+y2)cos(xy2),sin2A=2sinAcosA

And, cosx+cosy=2cos(x+y2)cos(xy2)

sin2A+sin2B+sin2C=2sin(2A+2B2)cos(2A2B2)+2sinC.cosC=2sin(A+B)cos(AB)+2sinC.cosC=2sin(πC)cos(AB)+2sinC.cosC=2sinCcos(AB)+2sinC.cosC=2sinC(cos(AB)+cosC)=2sinC(2cos(AB+C2)cos(ABC2))=2sinC(2cos(πBB2)cos(Aπ+A2))=2sinC(2cos(π2B)cos(Aπ2))=4sinCsinBcos((π2A))=4sinAsinBsinC

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon