1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VIII
Physics
Test Friction
If a ≠ b ≠ c,...
Question
If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b
3
− c
3
) x + (c
3
− a
3
) y + (a
3
− b
3
) = 0 represent the same line.
Open in App
Solution
The given lines are
(b − c)x + (c − a)y + (a − b) = 0 ... (1)
(b
3
− c
3
)x + (c
3
− a
3
)y + (a
3
− b
3
) = 0 ... (2)
The lines (1) and (2) will represent the same lines if
b
-
c
b
3
-
c
3
=
c
-
a
c
3
-
a
3
=
a
-
b
a
3
-
b
3
⇒
b
-
c
b
-
c
b
2
+
b
c
+
c
2
=
c
-
a
c
-
a
c
2
+
a
c
+
a
2
=
a
-
b
a
-
b
a
2
+
a
b
+
b
2
⇒
1
b
2
+
b
c
+
c
2
=
1
c
2
+
a
c
+
a
2
=
1
a
2
+
a
b
+
b
2
∵
a
≠
b
≠
c
⇒
b
2
+
b
c
+
c
2
=
c
2
+
a
c
+
a
2
and
c
2
+
a
c
+
a
2
=
a
2
+
a
b
+
b
2
⇒
a
-
b
a
+
b
+
c
=
0
and
b
-
c
b
+
c
+
a
=
0
⇒
a
+
b
+
c
=
0
∵
a
≠
b
≠
c
Hence, the given lines will represent the same lines if a + b + c = 0.
Suggest Corrections
0
Similar questions
Q.
Equations
(
b
−
c
)
x
+
(
c
−
a
)
y
+
(
a
−
b
)
=
0
and
(
b
3
−
c
3
)
x
+
(
c
3
−
a
3
)
y
+
a
3
−
b
3
=
0
will represent the same line if
Q.
Equations
(
b
−
c
)
x
+
(
c
−
a
)
y
+
(
a
−
b
)
=
0
and
(
b
3
−
c
3
)
x
+
(
c
3
−
a
3
)
y
+
a
3
−
b
3
=
0
represents a line if
Q.
Prove that the lines
a
x
+
b
y
+
c
=
0
,
b
x
+
c
y
+
a
=
0
and
c
x
+
a
y
+
b
=
0
are concurrent
a
3
+
b
3
+
c
3
=
3
a
b
c
or if
a
+
b
+
c
=
0
.
Q.
If a, b, c
>
0
, then prove that
a
3
b
3
+
b
3
c
3
+
c
3
a
3
≥
3
.
Q.
If a + b + c = 0, then write the value of a
3
+ b
3
+ c
3
.