wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=111111111, prove that An=3n13n13n13n13n13n13n13n13n1,nN.

Open in App
Solution

Here, A=111111111

We shall prove the result by principle of mathematical induction.

Let P(n)An=3n13n13n13n13n13n13n13n13n1
Putting n =1
P(1):A1=311311311311311311311311311=303030303030303030=111111111........(i)
which is true for n=1. Let the result be true for n =k.
P(k):Ak=⎢ ⎢3k13k13k13k13k13k13k13k13k1⎥ ⎥..........(ii)

Putting n=k+1P(k+1):Ak+1=⎢ ⎢3k3k3k3k3k3k3k3k3k⎥ ⎥
Now, LHS=Ak+1=Ak.A1Ak.A1=⎢ ⎢3k13k13k13k13k13k13k13k13k1⎥ ⎥111111111 [Using Eqs.(i)and (ii)]

=⎢ ⎢3k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k13k1+3k1+3k1⎥ ⎥
Using multiplication of matrix.
=⎢ ⎢3×3k13×3k13×3k13×3k13×3k13×3k13×3k13×3k13×3k1⎥ ⎥=⎢ ⎢3k3k3k3k3k3k3k3k3k⎥ ⎥=RHS
Therefore, the result is true for n=k+1 whenever it is true for n=k. So, by principle of mathematical induction it is true for all nN.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon