If A=⎡⎢⎣111111111⎤⎥⎦, prove that An=⎡⎢⎣3n−13n−13n−13n−13n−13n−13n−13n−13n−1⎤⎥⎦,n∈N.
Here, A=⎡⎢⎣111111111⎤⎥⎦
We shall prove the result by principle of mathematical induction.
Let P(n)An=⎡⎢⎣3n−13n−13n−13n−13n−13n−13n−13n−13n−1⎤⎥⎦
Putting n =1
P(1):A1=⎡⎢⎣31−131−131−131−131−131−131−131−131−1⎤⎥⎦=⎡⎢⎣303030303030303030⎤⎥⎦=⎡⎢⎣111111111⎤⎥⎦........(i)
which is true for n=1. Let the result be true for n =k.
∴P(k):Ak=⎡⎢
⎢⎣3k−13k−13k−13k−13k−13k−13k−13k−13k−1⎤⎥
⎥⎦..........(ii)
Putting n=k+1∴P(k+1):Ak+1=⎡⎢
⎢⎣3k3k3k3k3k3k3k3k3k⎤⎥
⎥⎦
Now, LHS=Ak+1=Ak.A1Ak.A1=⎡⎢
⎢⎣3k−13k−13k−13k−13k−13k−13k−13k−13k−1⎤⎥
⎥⎦⎡⎢⎣111111111⎤⎥⎦ [Using Eqs.(i)and (ii)]
=⎡⎢
⎢⎣3k−1+3k−1+3k−13k−1+3k−1+3k−13k−1+3k−1+3k−13k−1+3k−1+3k−13k−1+3k−1+3k−13k−1+3k−1+3k−13k−1+3k−1+3k−13k−1+3k−1+3k−13k−1+3k−1+3k−1⎤⎥
⎥⎦
Using multiplication of matrix.
=⎡⎢
⎢⎣3×3k−13×3k−13×3k−13×3k−13×3k−13×3k−13×3k−13×3k−13×3k−1⎤⎥
⎥⎦=⎡⎢
⎢⎣3k3k3k3k3k3k3k3k3k⎤⎥
⎥⎦=RHS
Therefore, the result is true for n=k+1 whenever it is true for n=k. So, by principle of mathematical induction it is true for all n∈N.