wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=[cos2θcosθsinθcosθsinθsin2θ];B=[cos2ϕcosϕsinϕcosϕsinϕsin2ϕ] show that AB is zero matrix if θ and ϕ differ by an odd multiple of π2

Open in App
Solution

If θ=(2n+1)π2+ϕ, let ϕ=x
else if ϕ=(2n+1)π2+θ, let θ=x

cos((2n+1)π2+x)=cos(nπ+π2+x)={sinx,when n is evensinx,when n is odd
sin((2n+1)π2+x)=sin(nπ+π2+x)={cosx,when n is evencosx,when n is odd

cos((2n+1)π2+x)sin((2n+1)π2+x)=cosxsinx

When θ=x,
A=[cos2xcosxsinxcosxsinxsin2x] and B=[sin2xcosxsinxcosxsinxcos2x]

AB=[0000]

When ϕ=x,
B=[cos2xcosxsinxcosxsinxsin2x] and A=[sin2xcosxsinxcosxsinxcos2x]

AB=[0000]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Scalar Multiplication of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon