If A=[cosαsinα−sinαcosα], then A2=
[cos2αsin2αsin2αcos2α]
[cos2α−sin2αsin2αcos2α]
[cos2αsin2α−sin2αcos2α]
[−cos2αsin2α−sin2α−cos2α]
Since A2=A.A=[cosαsinα−sinαcosα][cosαsinα−sinαcosα]=[cos2αsin2α−sin2αcos2α].
For (i)A=[cosαsinα−sinαcosα], verify that A'A=I.
For (ii)A=[sinαcosα−cosαsinα], verify that A'A=I.
If A=[sinαcosα−cosαsinα], then verify that A'A=I.
If A=[0−tanα2tanα20] and I is the identity matrix of order 2, show that I + A =(I−A)[cosα−sinαsinαcosα]
If A = [cosαsinα−sinαcosα] and A−1 = A', then find the value of α.