wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=[cosθsinθsinθcosθ] then prove that An=[cosnθsinnθsinnθcosnθ], nN.

Open in App
Solution

A=[cosθsinθsinθcosθ]
A2=[cosθsinθsinθcosθ][cosθsinθsinθcosθ]
A2=[cos2sin2θcosθsinθ+sinθcosθsinθcosθsinθcosθsin2θ+cos2θ]
A2=[cos2θsin2θsin2θcos2θ]
A2=[cos2θsin2θsin2θcos2θ]
A3=[cos2θsin2θsin2θcos2θ][cosθsinθsinθcosθ]
A3=[cos2θcosθsin2θsinθsinθcos2θ+sin2θcosθsin2θcosθsinθcos2θsinθsinθ+cos2θcosθ]
A3=[cos3θsin3θsin3θcos3θ]
An=[cosnθsinnθsinnθcosnθ]
nR.

1072179_1160175_ans_e1f463162a004b418fc9e8782c12e1e1.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon