wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=[cosθsinθsinθcosθ]
Then prove that Am=[cosθsinθsinθcosθ] where nϵN

Open in App
Solution

We shall prove the result by using principle of mathematical induction.
We have P(n): If A=[cosθsinθsinθcosθ], then An=[cosθsinθsinθcosθ],nϵNP(1):A=[cosθsinθsinθcosθ], So A1=[cosθsinθsinθcosθ]
Therefore, the result is true for n = 1
Let the result be true for n = k. So
P(k):A=[cosθsinθsinθcosθ], Then Ak=[coskθsinkθsinkθcoskθ](1)
Now, we prove that the result holds for n = k + 1
Now Ak+1=A.Ak[cosθsinθsinθcosθ][coskθsinkθsinkθcoskθ]Using((1))
=[cosθ coskθsinθ sinθcosθ sink+sinθ cos k θsinθ coskθ+cosθ sinkθsinθsinkθ+cosθ coskθ]
=[cos(θ+kθ)sin(θ+kθ)sin(θ+kθ)cos(θ+kθ)]=[cos(k+1)θsin(k+1)θsin(k+1)θcos(k+1)θ]
Therefore, the result is true n = k + 1
Thus by pricniple of mathematical induction, we have An=[cos nθsin θsin nθcos nθ], holds for all natural numbers.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon