We shall prove the result by using principle of mathematical induction.
We have P(n): If A=[cosθsinθ−sinθcosθ], then An=[cosθsinθ−sinθcosθ],nϵNP(1):A=[cosθsinθ−sinθcosθ], So A1=[cosθsinθ−sinθcosθ]
Therefore, the result is true for n = 1
Let the result be true for n = k. So
P(k):A=[cosθsinθ−sinθcosθ], Then Ak=[coskθsinkθ−sinkθcoskθ]−−−−−−−(1)
Now, we prove that the result holds for n = k + 1
Now Ak+1=A.Ak[cosθsinθ−sinθcosθ][coskθsinkθ−sinkθcoskθ]Using((1))
=[cosθ coskθ−sinθ sinθcosθ sink+sinθ cos k θ−sinθ coskθ+cosθ sinkθ−sinθsinkθ+cosθ coskθ]
=[cos(θ+kθ)sin(θ+kθ)−sin(θ+kθ)cos(θ+kθ)]=[cos(k+1)θsin(k+1)θ−sin(k+1)θcos(k+1)θ]
Therefore, the result is true n = k + 1
Thus by pricniple of mathematical induction, we have An=[cos nθsin θ−sin nθcos nθ], holds for all natural numbers.