wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (a+bx)ey/x=x, then prove that x3d2ydx2=(xdydxy)2

Open in App
Solution

(a+bx)ey/x=xey/x=xa+bxtakingloglogey/x=log(xa+bx)yx=logxlog(a+bx)y=x[logxxlog(a+bx)]y=x.1x+logx.1x(1a+bx)×blog(a+bx)(i)y′′1xb{(a+bx)×1x(b)(a+bx)21a+bx×b}x3y′′=(xdydx)22xydydx+y2=(xdydxy)2
Proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon