If a chord of a circle of radius 5cm subtends 120∘ at the centre of the circle, then the area of the corresponding segment of the circle is
A
25(π3−14)cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
25(π3−√34)cm2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
25(π3−12)cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
25(π3−√32)cm2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B25(π3−√34)cm2 Draw perpnedicular bisectors OC and AB. ∠AOC=∠BOC=∠AOB2=60∘
In ΔACO, cos60∘=OCAO ⇒12=OC5 ⇒OC=52cm sin60∘=ACAO ⇒√32=AC5 ⇒AC=5√32cm
Since, AC=CB=AB2 ∴AB=2AC=5√3cm ∴ Area of ΔAOB=12×AB×OC =12×5√3×52=25√34cm2
Area of sector AOB=θ360×πr2 =120∘360∘×π×52 =25π3cm2 ∴ Area of corresponding segment = Area of sector AOB− Area of ΔAOB =25π3−25√34 =25(π3−√34)cm2