If acosθ+bsinθ=4 and asinθ−bcosθ=3, then what is the value of a2+b2?
25
Open in App
Solution
The correct option is A 25 acosθ+bsinθ=4 and asinθ−bcosθ=3
Squaring both the equations, (acosθ+bsinθ)2=42and(asinθ−bcosθ)2=32Adding, we geta2cos2θ+2absinθcosθ+b2sin2θ+a2sin2θ−2absinθcosθ+b2cos2θ=16+9⇒a2(cos2θ+sin2θ)+b2(cos2θ+sin2θ)=25⇒a2+b2=25