If a curve is given by x=acost+b2cos2t and y=sint+b2sin2t, then the points for which d2ydx2=0, are given by.
A
sint=2a2+b23ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cost=−[a2+2b23ab]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tant=a/b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ccost=−[a2+2b23ab] We have, x=acost+b2cos2t and y=asint+b2sin2t On differentiating both equations w.r.t. t, we get dxdt=−asint−bsin2t and dydt=acost+bcos2t ∴dydx=dy/dtdx/dt=acost+bcos2t−asint−bsin2t ⇒dydx=−(acost+bcos2t)(asint+bsin2t) Now, d2ydx2=ddx(dydx)=ddt(dydx)⋅dtdx ⇒d2ydx2=−ddt(acost+bcos2tasint+bsin2t)dtdx =[(asint+b]sin2t)(−asint−2bsin2t)−(acost+bcos2t)(acost+2bcos2t)](asint+bsin2t)2×1−asint−bsin2t =[a2sin2t+3absintsin2t+2b2sin22t+a2cos2t+3abcostcos2t+2b2cos22t](asint+bsin2t)3 =a2(sin2t+cos2t)+b2(sin22t+cos22t)+3abcos(2t−t)(asint+bsin2t)3 ⇒d2ydx2=−[a2+2b2+3abcost(asint+bsin2t)3] Given, d2ydx2=0 ⇒a2+2b2+3abcost=0 ⇒cost=−(a2+2b23ab)