wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a curve is represented parametrically by the equations.
x=sin(t+7π12)+sin(tπ12)+sin(t+3π12),
y=cos(t+7π12)+cos(tπ12)+cos(t+3π12) then find the value of ddt(xyyx) at t=π8

Open in App
Solution

x=sin(t+7π12)+sin(tπ12)+sin(t+3π12)
x=2sin⎜ ⎜ ⎜t+7π12+tπ122⎟ ⎟ ⎟cos⎜ ⎜ ⎜7π12+π122⎟ ⎟ ⎟+sin(t+π4)
=2sin(t+π4)cosπ3+sin(t+π4)
=sin(t+π4)+sin(t+π4)
=2sin(t+π4)
y=2cos⎜ ⎜ ⎜t+7π12+tπ122⎟ ⎟ ⎟cos(8π122)+cos(t+π4)
=2cos(t+π4)cosπ3+cos(t+π4)
=2cos(t+π4)
ddt(xyyx)=ddt(tan(t+π4)cot(t+π4))
=sec2(t+π4)+csc2(t+π4)
At t=π8
sec2(π8+π4)+csc2(π8+π4)
=sec23π8+csc23π8
=1cos23π8+1sin23π8
=21+cos3π4+21cos3π4
=2112+21+12
=2221+222+1=22(2+1)+22(21)
=2×2+22+2×222
=8

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon