wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a=eiα,b=eiβ,c=eiγ and cosα+cosβ+cosγ=0=sinα+sinβ+sinγ, then prove the following
a2+b2+c2=0

Open in App
Solution

cosα+cosβ+cosγ=0............(1)sinα+sinβ+sinγ=0..............(2)Multiplying(2)×(1)andaddingto(1)(cosα+isinα)+(cosβ+isinβ)+(cosα+isiny)=0Letz1+z2+z3=01z1+1z2+1z3=(cosαisinα)+(cosβisinβ)+(cosγisinγ)=0z2z3+z1z3+z1z2=0(z1+z2+z3)2=z21+z22+z23+2×0a2+b2+c2=(eiα)2+(eiβ)2+(eiγ)2fromdemorestheorem,eiα=cosα+isinαeiβ=cosβ+isinβandeiγ=cosγ+isinγa2+b2+c2=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon