If aϵR+ and the roots of equation ax2–3x+c=0 are two consecutive odd positive integers, then
aϵ(0,34]
Let α and α+2 be two consecutive odd positive integers\\
∴ aα2−3α+c=0 and a(α+2)2−3(α+2)+c=0
⇒(aα2−3α+c)+4aα+4a−6=0
⇒4aα+4a−6=0, since aα2−3α+c=0
⇒3=2a(1+α) where α≥1
⇒32a−1=α⇒32a−1≥1⇒32a≥2⇒a≤34