If a=z-1z+1 is purely imaginary number z≠1, then zis
1
2
3
4
Explanation for the correct option:
Step1. Given that
Given, a=z-1z+1 is & z≠1
Let, z=x+iy
z=x2+y2
Step2. finding the value of z
⇒Rez-1z+1=Rex+iy-1x+iy+1,z≠1⇒Rez-1z+1=Rex-1+iyx+1+iy⇒Rez-1z+1=Re(x-1+iy)×(x+1-iy)(x+1+iy)×(x+1-iy)⇒Rez-1z+1=x2-1+y2(x+1)2+y2
Put Rez-1z+1=0
Therefore,
⇒x2-1+y2(x+1)2+y2=0⇒x2+y2=1
Taking root both side
⇒x2+y2=1⇒z=1
Hence, the correct option is option(A).
If z−1z+1 is purely imaginary number (z≠−1), find the value of |z|.