If a+ib=(x+i)2(2x2+1), prove that a2+b2=(x2+1)2(2x2+1)2
Here a+ib=(x+i)2(2x2+1)=x2+i2+2ix2x2+1
=x2−12x2+1+i2x2x2+1
Comparing both sides, we have
a=x2−12x2+1 and b=2x2x2+1
∴ a2+b2=(x2−12x2+1)2+(2x2x2+1)2
=(x2−1)2(2x2+1)2+(2x)2(2x2+1)2
=(x2−1)2+(2x)2(2x2+1)2
=x4+1−2x2+4x2(2x2+1)2
=x4+1+2x2(2x2+1)2=(x2+1)2(2x2+1)2