wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ∈ ℕ.

Open in App
Solution

Let the given statement P(n), be given as
P(n): (AT)n = (An)T for all n ∈ ℕ.

We observe that
P(1): (AT)1 = AT = (A1)T
Thus, P(n) is true for n = 1.

Assume that P(n) is true for n = k ∈ ℕ.
i.e., P(k): (AT)k = (Ak)T

To prove that P(k + 1) is true, we have
(AT)k + 1 = (AT)k.(AT)1
= (Ak)T.(A1)T
= (Ak + 1)T
Thus, P(k + 1) is true, whenever P(k) is true.

Hence, by the Principle of mathematical induction, P(n) is true for all n ∈ ℕ.

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon