A is an actual angle of right angled △ABC and right angle at B.
∴A+B+C=180∘
A+90∘+C=180∘
A+C=90∘
Now, sinA+cosA=√2[1√2sinA+1√2cosA]
=√2[cos45∘sinA+sin45∘cosA]
=√2sin(A+45∘)
(i) When A=C, then A=C=45∘ because B=90∘
⇒√2sin(45∘+45∘)=√2sin90∘=√2>1
(ii) When A>C, e.g. A=75∘&C=75∘
⇒√2sin(75∘+45∘)=√2sin120∘=√2×√32=√3√2>1
(iii) When A<C, e.g, A=15∘&C=75∘
⇒√2sin(15∘+45∘)=√2sin60∘=√2×√32=√3√2>1
Hence, in all cases sinA+cosA>1.
Hence, the answer is greater than one.