The correct option is A A⊂B
For n=1,4n−3n−1=4−3−1=0=9(1−1)ϵB
For n≥4,4n−3n−1=(1+3)n−3n−1
=(nC0+nC1⋅3+nC2⋅32+.....+nCn⋅3n)=3n−1
=nC2⋅32+.....+nCn⋅3n=9(nC2+....+3n−2)
=9{(nC2+.....+3n−2+1)−1}ϵB
∴A⊆B.
Using roster method,
A={0,9,54,243,....}
and B={0,9,18,27,36,45,54,.....}
∴A⊂B. (∵A≠B)