The correct option is
A True
Given:A=[cosθisinθisinθcosθ]
To Check whether the given statement is true
An=[cosnθisinnθisinnθcosnθ]
Put n=1
A1=[cosθisinθisinθcosθ]
So,An is true for n=1
Let An is true for n=k, so
Ak=[coskθisinkθisinkθcoskθ] ......(1)
Ak+1=[cos(k+1)θisin(k+1)θisin(k+1)θcos(k+1)θ]
Now,Ak+1=Ak×A
=[coskθisinkθisinkθcoskθ][cosθisinθisinθcosθ]
=[coskθcosθ+i2sinkθsinθcoskθsinθ+isinkθcosθisinkθcosθ+icoskθsinθi2sinkθsinθ+cosθcoskθ]
=[coskθcosθ−sinkθsinθisinkθcosθ+coskθsinθi(sinkθcosθ+coskθsinθ)cosθcoskθ−sinkθsinθ]
=[cos(k+1)θisin(k+1)θisin(k+1)θcos(k+1)θ]
So,An is true for n=k+1 whenever it is true for n=k
Hence, by principle of mathematical induction An is true for all positive integer.
Hence the given statement is true.