If a line ax+by+c=0 cuts the sides BC,CA and AB of triangle ABC at points P,Q and R respectively, the prove that BPPC.CQQA.ARRB=−1
Open in App
Solution
P is (λx3+x2λ+1.λy3+y2λ+1) where λ=BPPC P lies on line ax+by+c=0 a(λx3+x2)λ+1+b(λy3+y2)λ+1+c=0 ∴λ(ac2+by3+c)+(ax2+by2+c)=0 ∴λ=−(ax2+by2+c)(ax3+by3+c)=−l2l3 where λ=BPPC Similarly, μ=−l3l1 where μ=CQQA and v=−l1l2 where v=ARRB ∴λμv=(l2l3)×(l3l1)×(l1l2)=−1