If an+2 = a2n−1, then the value of n is __.
3
Consider the equation an+2 = a2n−1.
Since the bases of the powers are equal, so should the exponents be. ⟹n+2=2n−1 ⟹2+1=2n−n ⟹n=3
Given that ai > 0 and i belongs to a set of natural numbers. If a1,a2,a3.....a2n are in AP, then find the value of a1+a2n√a1+√a2+a2+a2n−1√a2+√a3............+an+an+1√an+√an+1