If a≠b≠c such that
∣∣
∣
∣∣a3−1b3−1c3−1abca2b2c2∣∣
∣
∣∣=0 then,
abc = 1
Δ=∣∣
∣
∣∣a3−1b3−1c3−1abca2b2c2∣∣
∣
∣∣=∣∣
∣
∣∣a3b3c3abca2b2c2∣∣
∣
∣∣+∣∣
∣∣−1−1−1abca2b2c2∣∣
∣∣
Δ=abc∣∣
∣∣a2b2c2111abc∣∣
∣∣+∣∣
∣∣−1−1−1abca2b2c2∣∣
∣∣Δ=abc∣∣
∣∣111abca2b2c2∣∣
∣∣−1∣∣
∣∣111abca2b2c2∣∣
∣∣
Δ=(abc−1)∣∣
∣∣111abca2b2c2∣∣
∣∣=(abc−1)(a−b)(b−c)(c−a)Since, a≠b≠c,Δ=0⇒(abc−1)=0 ⇒abc=1