If a≠b≠c, write the condition for which the equations (b−c)x+(c−a) y+(a−b)=0 and (b3−c3)x+(c3−a3)y+(a3−b3=0 represent the same line.
(b−c)x+(c−a) y+(a−b)=0
and (b3−c3)x+(c3−a3)y+(a3−b3=0
represint the same line if
b3−c3b−c=c3−a3c−a=a3−b31−b
⇒b2+c2+bc=c2+a2+ac=a2+b2+ab
If b2+c2+bc=c2+a2+ac
⇒b2−a2=ac−bc
⇒(b−a)(b+a)=ac−bc
⇒b+a=−c
⇒a+b+c=0