wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=nr=0(nCrcos(nr)x.sinrx),B=2n sin nx and C=1!0!n1+1!3!n3+1!5!n5++1!n1!1, then

A
A=B2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A=!nCB2n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
A=3!n2n1BC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A=BC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A A=B2
B A=!nCB2n
C=1!n(1!0!n1+1!3!n3+1!5!n5++1!n1!1)=1!n(nC1+nC3++nCn1)C=2n2n!B=2n sin nxA=nC1cos(n1)x sin x+nC2cos(n2)x sin(2x)++nCn1cosx sin(n1)x+nCnsin(nx).A=nCnsin(nx)+nCn1cosx sin(n1)x+nCn2cos(n2)x sin(2x)++nC1cos(n1)x sinx2A=2nCnsin(nx)+nC1(cos(n1)x sin x+cosx sin(n1)x)+nC2(cos(n2)x sin(2x)+cos(2x)sin(n2)x)++nCn1(cosx sin(n1)x+cos(n1)x sin x)=2sin(nx)+(sin(nx))(nC1+nC1++nCn1)2A=2sin(nx)+(sin(nx))(2n2)2A=2nsin(nx)A=2n1sin(nx)Hence A=B2andA=!n2n2n sin(nx)2n1!nA=!nCB2n

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon