wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a tanα+btanβ=(a+b)tan(α+β2), where αβ, prove that acosβ=bcosα,

Open in App
Solution

we have given,
atanα+btanβ=(a+b)tan(α+β2)tanα+btanβ=atan(α+β2)+btan(α+β2)a[tanαtan(α+β2)]=b[tan(α+β2)tanβ]usingtheformula:––––––––––––––––––––tanAtanB=sin(AB)cosA.cosBNow,substitutingtheformulabothside:asin(αα+β2)cosα.cos(α+β2)=bsin(α+β2β)cosβ.cos(α+β2)asin(αα+β2)cosα=bsin(α+β2β)cosβasin(αβ2)cosα=bsin(αβ2)cosβacosα=bcosβacosβ=bcosαprove.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon