The correct option is C 11-K
Let the two-digit number be ab, i.e. 10a + b
Based on the information provided, we get the following equation:
10a + b = K (a + b) ……(1)
(as the two-digit number is K times the sum of its two digits)
Now, let the number formed by interchanging the digits is M times the sum of the digits, i.e. 10b + a = M (b + a) ……(2)
Adding the two equations, we get:
10a + b + 10b + a = K (a + b) + M (b + a)
Or 11a + 11b = (K + M) (a + b)
Or 11 (a +b) = (K + M) (a + b)
Therefore, K + M = 11
Or M = 11 – k.
Hence, option (c) is the correct answer.
मान कि दो अंकों की संख्या ab है अर्थात् 10a + b.
दी गई जानकारी के आधार पर, हम निम्न समीकरण प्राप्त करते हैं:
10a + b = K (a + b) (1)
(चूंकि दो अंकों की संख्या, इसके दोनों अंकों के योग के K गुणी है)
अब, माना कि अंकों की अदला-बदली से बनी संख्या, अंकों के योग के M गुणी है। अर्थात्
10b + a = M (b + a) (2)
दोनों समीकरणों को जोड़ने पर, हम पाते हैं:
10a + b + 10b + a = K (a + b) + M (b + a)
या 11a + 11b = (K + M) (a + b)
या 11 (a + b) = (K + M) (a + b)
इसलिए, K + M = 11
या M = 11 – K
अतः, उत्तर (c) है।