If a1,a2,a3,... are in GP, then the value of the determinant ∆=loganlogan+1logan+2logan+3logan+4logan+5logan+6logan+7logan+8
-2
1
2
0
Finding the value of the determinant ∆=loganlogan+1logan+2logan+3logan+4logan+5logan+6logan+7logan+8
Given a1,a2,a3,... are in GP
Therefore r=a2a1=a3a2=…=anan-1
∆=loganlogan+1logan+2logan+3logan+4logan+5logan+6logan+7logan+8
Apply
C3→C3-C2C2→C2-C1
Since
logan+2–logan+1=log(an+2an+1)=logr
Also logan+1–logan=log(an+1an)
=logr
So, ∆=loganlogrlogrlogan+3logrlogrlogan+6logrlogr
Two Columns are same
So ∆=0
Hence, the value of ∆=|loganlogan+1logan+2logan+3logan+4logan+5logan+6logan+7logan+8| is 0.
If a1, a2, a3, . . . . . . , an . . . . . . .are in GP, then the value of the determinant