If a1,a2,.....,anare in AP, then 1a1a2+1a2a3+...….+1a(n-1)an is
(n-1)a1an
1a1an
(n+1)a1an
na1an
Find the value of 1a1a2+1a2a3+...….+1a(n-1)an:
Given a1,a2,.....,anare in AP.
Let d be the common difference of AP.
d=a2-a1=a3-a2=a4-a3=...….=an-a(n-1)1a1a2+1a2a3+....................+1a(n-1)an=1dda1a2+da2a3+....................+da(n-1)an=1d(a2-a1)a1a2+(a3-a2)a2a3+....................+(an-a(n-1))a(n-1)an=1da2a1a2-a1a1a2+a3a2a3-a2a2a3+....................+ana(n-1)an-a(n-1)a(n-1)an=1d1a1-1a2+1a2-1a3+....................+1a(n-1)-1an=1d1a1-1an=1d(an-a1)a1an=1da1+(n-1)d-a1a1an[∵an=a1+(n-1)d]=1d(n-1)da1an=(n-1)a1an
Hence, the correct option is (A).