If AB = 0, then for the matrices A=[cos2θcosθsinθcosθsinθsin2θ]andB=[cos2ϕcosϕsinϕcosϕsinϕsin2ϕ],θ−ϕ is
A
an odd muliple of π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
an odd multiple of π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
an even multiple of π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D an odd muliple of π2 A=[cos2θcosθsinθcosθsinθsin2θ]B=[cos2ϕcosϕsinϕcosϕsinϕsin2ϕ]AB=0[cos2θcosθsinθcosθsinθsin2θ]×[cos2ϕcosϕsinϕcosϕsinϕsin2ϕ]=0[cos2θcos2ϕ+cosϕcosθsinθsinϕcos2θcosϕsinϕ+sin2ϕcosθsinθcos2ϕcosθsinθ+sin2θcosϕsinϕcosθsinθcosϕsinϕ+sin2θsin2ϕ]=0[cosθcosϕ(cosθcosϕ+sinθsinϕ)cosθsinϕ(cosθcosϕ+sinϕsinθ)sinθcosϕ(cosϕcosθ+sinθsinϕ)sinθsinϕ(cosθcosϕ+sinθsinϕ)]=0(cosθcosϕ+sinθsinϕ)[cosθcosϕcosθsinϕsinθcosϕsinθsinϕ]=0cosθcosϕ+sinθsinϕ=0cos(θ−ϕ)=0