If AB=O where A=[cos2θcosθsinθcosθsinθsin2θ] and B=[cos2ϕcosϕsinϕcosϕsinϕsin2ϕ] then |θ−ϕ| is equal to
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ2 A=[cos2θcosθsinθcosθsinθsin2θ] and B=[cos2ϕcosϕsinϕcosϕsinϕsin2ϕ] given that AB is a null matrix. AB=[cos2θcosθsinθcosθsinθsin2θ][cos2ϕcosϕsinϕcosϕsinϕsin2ϕ] ⇒AB==[cosθcosϕ⋅cos(θ−ϕ)cosθsinϕ⋅cos(θ−ϕ)sinθcosϕ⋅cos(θ−ϕ)sinθsinϕ⋅cos(θ−ϕ)]=[0000] ⇒cos(θ−ϕ)=0 ∴|θ−ϕ|=π2 Hence, option B.