The correct option is A a2x2−(b2−2ac)x+c2=0
If α and β are roots of
ax2+bx+c=0 then,
α+β=−ba and αβ=ca
The equation whose roots are α2 and β2 will be,
x2−(α2+β2)x+α2β2=0⋯(1)
Now,
α2+β2=(α+β)2−2αβ
⇒α2+β2=(−ba)2−2(ca)
⇒α2+β2=b2−2aca2
α2β2=(ca)2=c2a2
Substituting the value of
α2+β2 and αβ in equation (1)
⇒x2−(b2−2aca2)x+c2a2=0
Hence the required quadratic equation is,
a2x2−(b2−2ac)x+c2=0