If α and β are the zeroes of the polynomial ax2+bx+c, then find the polynomial whose zeroes are 2α+3β,3α+2β.
α and β are the zeroes of the polynomial ax2+bx+c
Sum of the zeroes = (3α+2β)+(2α+3β)=5(α+β)
Product of zeroes = (3α+2β)×(2α+3β)=(6α2+9αβ+4αβ+6β2)=(13αβ+6α2+6β2)
Now, the polynomial having zeroes (3α+2β) and (2α+3β) is
x2+5(α+β)x+(13αβ+6α2+6β2)
=x2+5(−ba)×+(13×ca+6{α2+β2})[α2+β2=(α+β)2−2αβ]=x2+5(−ba)×+(13×ca+6{(−ba)2−2xca})=1a2(a2x2−5abx−6b2+11ac)