If α and β∈Care the distinct roots of the equationx2-x+1=0, then α101+β107 is equal to
1
2
-2
0
Explanation for correct option:
Step1. Find the root of the equation :
Given that α and β∈Care the distinct roots of the equationx2-x+1=0.
x2-x+1=0⇒x=1±1-42⇒x=1±i32⇒x=1+i32,1-i32⇒x=-ω2,-ω
⇒α=-ω2;β=-ω
Step2. Find the value of α101+β107:
α101+β107=(-ω2)101+(-ω)107⇒α101+β107=-(ω202+ω107)⇒α101+β107=-[(ω3)67ω+(ω3)35ω2]⇒α101+β107=-[ω+ω2]⇒α101+β107=1
Hence, the correct option is A.