If α,β are the different values of 3cosθ+4sinθ=92 and A=tan(α2+β2),B=tanα2tanβ2,C=sin(α+β), then which one of the option is true?
3cosθ+4sinθ=92
⇒6−6tan2θ2+16tanθ2=9+9tan2θ2
⇒15tan2θ2−16tanθ2+3=0
This is quadratic in tanx and tanα,tanβ are its roots.
⇒tanα2+tanβ2=1615 and tanα2tanβ2=315
Using these, A) tanα+β2=tanα2+tanβ21−tanα2tanβ2=43
B) tanα2tanβ2=315
C) sin(α+β)=2tanα+β21+tan2α+β2=2425
Hence A>C>B.