wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α,β are the roots of ax2+bx+c=0 then match the elements of list I with elements of list II:

List I List II
A) αβ+βα=1) c2a2
B) α2+β2α2+β2=2) c5[3abcb3]a8
C) α3+β33) b22acac
D) α5β8+α8β5=4) 3abcb3a3
The correct match from List-I to List-II: A,B,C,D

A
3,1,4,2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1,2,5,4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2,3,4,5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1,2,3,4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 3,1,4,2
As α,β are roots of ax2+bx+c=0, then
S1=α+β=ba
S2=αβ=ca

(A) αβ+βα=α2+β2αβ=(α+β)22αβαβ
=(ba)22(ca)(ca)=b2a22caca=b22acca

(B) α2+β2ca=α2+β21α2+1β2
=α2+β2α2+β2α2β2=α2+β2=(ca)2=c2a2

(C) α2+β2=(α+β)33αβ(α+β)=(ba)33(ca)(ba)
=b3a3+3bca2=b3+3abca3

(D) α5β8+α8β5=α5β5(β3+α3)=(ca)5(3abcb3a3)
=c5(3abcb3)a8

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Subset and Superset
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon