We have,
α+β=χ ……. (1)
tanαtanβ=xy
Using componendo and divideno rule,
tanα+tanβtanα−tanβ=x+yx−y
sinαcosα+sinβcosβsinαcosα−sinβcosβ=x+yx−y
sinαcosβ+cosαsinβsinαcosβ−cosαsinβ=x+yx−y
sin(α+β)sin(α−β)=x+yx−y
Forrecipocal
sin(α−β)sin(α+β)=x−yx+y
Fromequation(1)
sin(α−β)sinχ=x−yx+y
sin(α−β)=x−yx+ysinχ
Henceproved.