wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α+β=γ and tanαtanβ=xy, the prove that sin (αβ)=xyx+ysinγ.

Open in App
Solution

We have,

α+β=χ ……. (1)

tanαtanβ=xy

Using componendo and divideno rule,

tanα+tanβtanαtanβ=x+yxy

sinαcosα+sinβcosβsinαcosαsinβcosβ=x+yxy

sinαcosβ+cosαsinβsinαcosβcosαsinβ=x+yxy

sin(α+β)sin(αβ)=x+yxy

Forrecipocal

sin(αβ)sin(α+β)=xyx+y

Fromequation(1)

sin(αβ)sinχ=xyx+y

sin(αβ)=xyx+ysinχ

Henceproved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon