Given α,β,γ are angles which a line makes with positive direction of axes
Let the line be −−→OP where P(x,y,z)
Projections of ¯¯¯¯¯¯¯¯OP on axes are x,y,z respectively
From trigonometry
cosα=x∣∣¯¯¯¯¯¯¯¯OP∣∣cosα=x√x2+y2+z2(1)Similarly,cosβ=x√x2+y2+z2(2)cosγ=x√x2+y2+z2(3)
Squaring on both sides of (1),(2),(3) and adding
cos2α+cos2β+cos2γ=x2+y2+z2x2+y2+z2cos2α+cos2β+cos2γ=1(4)
We know,
cos2θ+sin2θ=1sin2θ=1−cos2θ(5)From(4),(5)1−sin2α+1−sin2β+1−sin2γ=1sin2α+sin2β+sin2γ=2
We know,
cos2α=2cos2α−1cos2α+12=cos2α(6)From(4),(6)cos2α2+12+cos2β2+12+cos2γ2+12=1cos2α+cos2β+cos2γ=−1
cos2α+cos(β+γ)cos(β−γ)=?(7)
Formula: cos(β+γ)=cosβcosγ−sinβsinγcos(β−γ)=cosβcosγ+sinβsinγ
On multiplying cos(β+γ)cos(β−γ)=cos2βcos2γ−sin2βsin2γ
=cos2βcos2γ−(1−cos2β)(1−cos2γ)(∵cos2θ+sin2θ=1)=cos2βcos2γ−1−cos2βcos2γ+cos2β+cos2γ=−1+cos2β+cos2γ
Adding cos2α on both sides
cos2α+cos(β+γ)cos(β−γ)=−1+cos2β+cos2γ+cos2αcos2α+cos(β+γ)cos(β−γ)=−1+1from(4)cos2α+cos(β+γ)cos(β−γ)=0