wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α,β,γ are the roots of x3+px+r=0 then find 1+α1α+1+β1β+1+γ1γ

Open in App
Solution

Let y=1+α1α
α=y1y+1 the equation with roots dfrac1+α1α,1+β1β,1+γ1γ is
f(y1y+1)=(y1y+1)3+p(y1y+1)+r=0
(y1)3+p(y1)(y+1)2+r(y+1)3=0
y313y2+3y+p(y21)(y+1)+r(y3+3y2+3y+1)=0
y313y2+3y+p(y3+2y2+yy22y1)+r(y3+3y2+3y+1)=0
y3(1+p+r)+y2(3+p+3r)+y(3p+3r)1p+r=0
1+α1α+1+β1β+1+γ1γ=3p3r1+p+r


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon