The correct option is A −5
Let y=1+α1−α⇒α=y−1y+1
As α,β,γ are roots of x3−x2−1=0
Replacing x→y−1y+1 in above equation, we get
(y−1y+1)3−(y−1y+1)2−1=0⇒(y−1)3−(y−1)2(y+1)−(y+1)3=0⇒y3−1−3y2+3y−y3+y+2y2−y2−1+2y−y3−1−3y2−3y=0⇒−y3−5y2+3y−3=0⇒y3+5y2−3y+3=0
And roots are 1+α1−α,1+β1−β,1+γ1−γ
Hence, 1+α1−α+1+β1−β+1+γ1−γ=−5
Hence, option 'A' is correct.