If α,β≠0, and f(n)=αn+βn and ∣∣
∣
∣∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣∣
∣
∣∣=K(1−α)2(1−β)2(α−β)2, then K is equal to:
A
αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1 f(1)=α+β f(2)=α2+β2 f(3)=α3+β3 f(4)=α4+β4
So, ∣∣
∣
∣∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣∣
∣
∣∣=∣∣
∣
∣∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣∣
∣
∣∣
Splitting it as a product of two determinants. =∣∣
∣∣1111αβ1α2β2∣∣
∣∣×∣∣
∣∣1111αβ1α2β2∣∣
∣∣ =∣∣
∣∣1111αβ1α2β2∣∣
∣∣2