If α=cos(8π11)+isin(8π11), then Re(α+α2+α3+α4+α5) is
A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−12 α=cosA+isinA=cisA, where A=8π11 z=α+α2+α3+α4+α5=α(α5−1α−1) ⇒z=cisA((cisA)5−1cisA−1)=cisA(1−cos5A−isin5A1−cosA−isinA) ⇒z=cisAsin5A2sinA2⎛⎝sin5A2−icos5A2sinA2−icosA2⎞⎠=cisAsin5A2sinA2⎛⎝isin5A2+cos5A2isinA2+cosA2⎞⎠ ⇒z=cisAsin5A2cis2AsinA2=cis3Asin5A2sinA2 ⇒Re(z)=cos3Asin5A2sinA2 ⇒Re(z)=cos3Asin5A22sinA4cosA4=cos(24π11)sin(20π11)2sin(2π11)cos(2π11)=cos(24π11)sin(20π11)−2sin(2π−2π11)cos(2π+2π11) ⇒Re(z)=cos(24π11)sin(20π11)−2sin(20π11)cos(24π11)=−12 Hence, option B is correct.