wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If areas of 's AMN,BNL and CLM are 1,2 and 3 respectively, then the value of 1+2+3 is

A
(2+2cosAcosBcosC)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(2+2sinAsinBsinC)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(12cosAcosBcosC)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(12sinAsinBsinC)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C (12cosAcosBcosC)
In ABM,
cosA=AMAB=AMc
AM=ccosA
Similarly, AN=bcosA
1= Area of AMN
=12.AM.AN.sinA
=12(ccosA)(bcosA).(sinA)
=(12bcsinA)cos2A
=cos2A where =12bcsinA
2=Area of BNL
=12.BL.BN.sinA
=12(acosB)(ccosB)sinB
=(12acsinB)cos2B
=cos2B where =12acsinB
3=Area of CMN
=12.CM.CL
=12(bcosC)(acosC)sinC
=(12absinB)cos2C
=cos2B where =12absinB
1+2+3=(cos2A+cos2B+cos2C)
Consider, cos2A+cos2B+cos2C
We know that cos2A=2cos2A1
or cos2A=1+cos2A2
cos2A+cos2B+cos2C
=1+cos2A2+1+cos2B2+1+cos2C2
=32+12[cos2A+cos2B+cos2C]
=32+12[2cos(A+B)cos(AB)+2cos2C1]
=32+cos(πC)cos(AB)+cos2C12
=1cosCcos(AB)+cos2C
=1cosC[cos(AB)+cosC]
=1cosC[cos(AB)+cos(π(A+B))]
=1cosC[cos(A+B)+cos(A+B)]
Using transformation angle formula, sinC+sinD=2sin(C+D2)cos(CD2)
=1cosC[2cosAcosB]
=12cosAcosBcosC
substituting for cos2A+cos2B+cos2C=12cosAcosBcosC we get
1+2+3=(12cosAcosBcosC)
986986_1090644_ans_cdd154c0a00e42588e0df955fda67f43.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon