If areas of △′'s AMN,BNL and CLM are △1,△2 and △3 respectively, then the value of △1+△2+△3 is
A
△(2+2cosAcosBcosC)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
△(2+2sinAsinBsinC)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
△(1−2cosAcosBcosC)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
△(1−2sinAsinBsinC)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C△(1−2cosAcosBcosC) In △ABM, cosA=AMAB=AMc ∴AM=ccosA Similarly, AN=bcosA △1= Area of △AMN =12.AM.AN.sinA =12(ccosA)(bcosA).(sinA) =(12bcsinA)cos2A =△cos2A where △=12bcsinA △2=Area of △BNL =12.BL.BN.sinA =12(acosB)(ccosB)sinB =(12acsinB)cos2B =△cos2B where △=12acsinB △3=Area of △CMN =12.CM.CL =12(bcosC)(acosC)sinC =(12absinB)cos2C =△cos2B where △=12absinB ∴△1+△2+△3=△(cos2A+cos2B+cos2C) Consider, cos2A+cos2B+cos2C We know that cos2A=2cos2A−1 or cos2A=1+cos2A2 ⇒cos2A+cos2B+cos2C =1+cos2A2+1+cos2B2+1+cos2C2 =32+12[cos2A+cos2B+cos2C] =32+12[2cos(A+B)cos(A−B)+2cos2C−1] =32+cos(π−C)cos(A−B)+cos2C−12 =1−cosCcos(A−B)+cos2C =1−cosC[cos(A−B)+cosC] =1−cosC[cos(A−B)+cos(π−(A+B))] =1−cosC[cos(A+B)+cos(A+B)] Using transformation angle formula, sinC+sinD=2sin(C+D2)cos(C−D2) =1−cosC[2cosAcosB] =1−2cosAcosBcosC substituting for cos2A+cos2B+cos2C=1−2cosAcosBcosC we get ∴△1+△2+△3=△(1−2cosAcosBcosC)