If ∝, β are the roots of the equation x2 - ax + b = 0, then α4+α3β+α2β2+αβ3+β4
a4 + 3a2b + b2
a4 - 3a2b + b2
a3 + 3a2b + b2
None of these
α+β= a , αβ= b
therefore α4+α3β+α2β2+αβ3+β4
=( α+β) (α3+β3) + α2β2
=(α+β)2[(α+β)2 - αβ]+ (αβ)2
= a2(a2 – 3b) +b2 =a4 – 3a2b+b2
Which of the following is an expansion of the identity (a–b)3?
Prove the following identities :
(i)(a+b)3=a3+b3+3a2b+3b2a (ii)(a−b)3=a3−b3−3a2b+3b2a [4 MARKS]