The correct option is C 212−287
Consider
(1+x)13=13C0+13C1.x1+13C2.x2+13C3.x3...+13C13.x13
Now Let x=1.
213=13C0+13C1+13C2+13C3...+13C13
=2[13C0+13C1+13C2+13C3...+13C6]
Hence
212=a0+a1+...a6 ...(i)
Similarly
(1−x)13|x=−1=a0−a1+a2−a3...a6=0...(ii)
Adding i and ii, we get
212=2(a0+a2+a4+a6)
=2(a0+a11+a9+a7)
Hence
211=a0+a11+a9+a7 ...(a)
Subtracting ii from i, we get
212=2(a1+a3+a5)
Or
211=a1+a3+a5 ...(b)
Adding a and b, we get
212=a1+a5+a7+a9+(a0+a3)
212=a1+a5+a7+a9+(1+13C3)
212=a1+a5+a7+a9+(287)
212−287=a1+a5+a7+a9.