Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x∈(1,e)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x∈(e,1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ax∈(0,e) (logex)2−3logex+3logex−1 is valid, when x>0 (logex)2−3logex+3logex−1<1 ⇒(logex)2−3logex+3logex−1−1<0 ⇒(logex)2−4logex+4logex−1<0 ⇒(logex−2)2logex−1<0 ⇒logex<1 Since, x>0 Therefore, x∈(0,e) Ans: A