wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin4xa+cos4xb=1a+b, prove that
(i) sin8xa3+cos8xb3=1(a+b)3
(ii) sin4nxa2n1+cos4nxb2n1=1(a+b)2n1,nN

Open in App
Solution

sin4xa+cos4xb=1a+b

(sin2x)2a+(1sin2x)2b=1a+b

(bl2+a(1l)2)(a+b)=ab ; let sin2x=l
(ab+b2)+(a2+ab)(1+t22t)=ab
t2(a+b)22(a2+ab)t+a2=0

t=2(a2+ab)±4(a4+a2b2+2a3b)4a2(a2+b2+2ab)2(a+b)2
t=2a(a+b)2(a+b)2
t=aa+b sin2x=aa+b
cos2x=ba+b

sin4xxa2n1+cos4xxb2n1=(sin2x)2na2n1+(cos2x)2nb2n1
=a2n(a+b)2na2n1+b2n(a+b)2nb2n1
=a+b(a+b)2n=1(a+b)2n1
sin4xxa2n1+cos4xxb2n1=1(a+b)2n1 (proved)
put n=2
sin8xa3+cos8xb3=1(a+b)3 (proved)

1089906_1189297_ans_ff86495617294b5fa95f880b8e7fae83.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon