If cos-1x-cos-1(y2)=α, then 4x2-4xycosα+y2=
4sin2α
-4sin2α
2sin2α
4
Explanation for the correct option:
Step 1: Apply inverse trigonometric identity.
We have given,
cos-1x-cos-1(y2)=α,
we know that,
cos-1x-cos-1y=cos-1{xy+1-x2.1-y2}
by using the above identity,
cos-1{xy2+1-x2.1-y24}=α
⇒ xy2+1-x2.1-y24=cosα
⇒ 1-x2.1-y24=cosα-xy2
Step 2: Simplifying and squaring both sides,
(21-x2.1-y24)2=(2cosα-xy)2
⇒ 4(1-x2)(4-y2)4=4cos2α+x2y2-4xycosα
⇒4-y2-4x2+x2y2+4xycosα-x2y2=4cos2α
⇒ 4-4x2-y2+4xycosα=4cos2α
⇒ 4-4cos2α=4x2+y2-4xycosα
⇒ 4sin2α=4x2+y2-4xycosα
Hence, the correct option is(A).